Electron-collisions with molecules of interstellar and plasma interest via the R-Matrix method
نویسنده
چکیده
Here the ab-initio R-Matrix method has been used to carry out electron-molecule collision calculations on the the molecules of interstellar interest C3N, C2H & CN, and molecules found in industrial plasma applications SiBr, SiBr2 and NaI. These were carried out using the UK Molecular R-Matrix codes, along with the Quantemol expert system for running these codes. Calculations have also been carried out on electron collisions with atomic oxygen using these codes, with details included about the problems faced in running an atomic calculation with the molecular codes. Calculations on each species include comparison of different models, including staticexchange and close-coupling models (with different size CAS tried), various basis sets, and for some species different initial orbitals. These different initial orbitals were either taken from the codes themselves (for SCF orbitals), or the quantum chemistry program MOLPRO (for natural orbitals), for the latter numerous state averaged orbitals were tried with different weightings in order to produce good target energies for carrying into the scattering calculation. Results for all calculations include scattering observables such as eigenphase sums, elastic and excitation cross-sections, bound anionic states and resonance positions and widths. Also a new theory has been developed for calculating rotational cross-sections which includes the spin angular momentum of the incoming scattering electron, this has been implemented into the already existing code ROTLIN, which can calculate rotational cross-sections using the scattering data from an R-Matrix calculation.
منابع مشابه
Particle in Cell-Monte Carlo Collisions of a Plasma Column Driven by Surface Wave Plasma Discharges
In this work, applicability of Particle in Cell-Monte Carlo Collisions (PIC-MCC) simulation method for better understanding of the plasma physical mechanisms and real important aspects of a plasma column driven by surface wave plasma discharges that is used in plasma antennas is examined. Via the implementation of geometry and physical parameters of the plasma column to an Object Oriented PIC-M...
متن کاملElectron - Impact Excitation of Interstellar Molecules
Electron-molecule collisions play a crucial role in astrophysical environments where the electron fraction is higher than about 10−5, e.g. in the diffuse ISM, PDRs or comets. We present here a brief review of our recent R-matrix calculations of rate coefficients for electron-impact rotational excitation of interstellar molecules. Our major result is the prediction of emission lines from higher ...
متن کاملCalculated cross sections for electron collisions with NF3, NF2 and NF with applications to remote plasma sources
Electron impact cross sections sets are constructed for the nitrogen trifluoride, nitrogen difluoride and nitrogen monofluoride molecules. These cross sections are based on ab initio R-matrix calculations augmented by other procedures. Cross sections are presented for elastic collisions, momentum transfer, dissociative electron attachment, electron impact dissociation, ionisation and dissociati...
متن کاملLow-energy electron-induced chemistry of condensed methanol: implications for the interstellar synthesis of prebiotic molecules.
In the interstellar medium, UV photolysis of condensed methanol (CH3OH), contained in ice mantles surrounding dust grains, is thought to be the mechanism that drives the formation of "complex" molecules, such as methyl formate (HCOOCH3), dimethyl ether (CH3OCH3), acetic acid (CH3COOH), and glycolaldehyde (HOCH2CHO). The source of this reaction-initiating UV light is assumed to be local because ...
متن کاملR-matrix calculations of polarisation effects in low-energy positron-molecule collisions
The study of the interaction of positrons with atoms and molecules has become increasingly popular, because more and more experimental activities have become feasible. Although exchange effects are absent, the polarisation effects, caused by the attractive nature between the positron and the target electrons, make the positron-molecule collisions more difficult to handle than the corresponding ...
متن کامل